
Garuda and Pari: 
Faster and Smaller SNARKs via  

Equifficient Polynomial Commitments

Michel Dellepere Pratyush Mishra Alireza Shirzad
UPennUPenn

1

Ava Labs



Succinct Non-Interactive Argument of Knowledge (SNARK)

2



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

2



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

Setup(CF)
𝗉𝗄 𝗏𝗄

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness

Setup(CF)
𝗉𝗄 𝗏𝗄

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness π

Setup(CF)
𝗉𝗄 𝗏𝗄

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness

vk verifying key
𝕩 instanceπ

Setup(CF)
𝗉𝗄 𝗏𝗄

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness

vk verifying key
𝕩 instanceπ

Setup(CF)
𝗉𝗄 𝗏𝗄

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1 accept / reject



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness

vk verifying key
𝕩 instanceπ

Setup(CF)
𝗉𝗄 𝗏𝗄

Completeness: If P knows valid 𝕨, then V accepts the proof π

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1 accept / reject



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness

vk verifying key
𝕩 instanceπ

Setup(CF)
𝗉𝗄 𝗏𝗄

Completeness: If P knows valid 𝕨, then V accepts the proof π
Knowledge Soundness: If P does not know a valid witness 𝕨, then V rejects π

2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1 accept / reject



Succinct Non-Interactive Argument of Knowledge (SNARK)

Prover
Verifier

pk proving key
𝕩 instance
𝕨 witness

vk verifying key
𝕩 instanceπ

Setup(CF)
𝗉𝗄 𝗏𝗄

Completeness: If P knows valid 𝕨, then V accepts the proof π
Knowledge Soundness: If P does not know a valid witness 𝕨, then V rejects π

Succinctness: Size of proof  and verifier running time are much 
                         smaller than running time of F

π
2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1 accept / reject



Q1: How small can the proof  be?π

3



Q1: How small can the proof  be?π

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

 
(on BLS12-381)

|π |144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

Groth16 
2𝔾1 + 1𝔾2 

 
(on BLS12-381)

|π |192 bytes144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

Groth16 
2𝔾1 + 1𝔾2 

Polymath [Lip24] 
3𝔾1 + 1𝔽 

 
(on BLS12-381)

|π |176 bytes 192 bytes144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

Groth16 
2𝔾1 + 1𝔾2 

Polymath [Lip24] 
3𝔾1 + 1𝔽 

 
(on BLS12-381)

|π |176 bytes 192 bytes144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!

Can we go lower than 176 bytes?



Q2: How fast can we prove?

4



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4

Approach 1: Free addition gates



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4

Approach 1: Free addition gates

• Only pay cryptographic (e.g., MSM) 
costs for multiplication gates 

• Achieved by circuit-specific SNARKs  
[GGPR13, BCTV14, Groth16]



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4

Approach 1: Free addition gates Approach 2: Custom gates

• Only pay cryptographic (e.g., MSM) 
costs for multiplication gates 

• Achieved by circuit-specific SNARKs  
[GGPR13, BCTV14, Groth16]



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4

Approach 1: Free addition gates Approach 2: Custom gates

• Only pay cryptographic (e.g., MSM) 
costs for multiplication gates 

• Achieved by circuit-specific SNARKs  
[GGPR13, BCTV14, Groth16]

• Specialized gates for particular 
computations (e.g., EC addition, 
Poseidon S-box) 

• Proposed recently for TurboPlonk 
[GW19], used widely 
[RISC0,Plonky3,CBBZ23,STW23]



Proving has a large overhead (~1000x) over native computation 
 

How to reduce this cost?

Q2: How fast can we prove?

4

Approach 1: Free addition gates Approach 2: Custom gates

• Only pay cryptographic (e.g., MSM) 
costs for multiplication gates 

• Achieved by circuit-specific SNARKs  
[GGPR13, BCTV14, Groth16]

• Specialized gates for particular 
computations (e.g., EC addition, 
Poseidon S-box) 

• Proposed recently for TurboPlonk 
[GW19], used widely 
[RISC0,Plonky3,CBBZ23,STW23]

Unfortunately, no existing SNARK supports both! 
 

Can we fix this?



Our Contributions



Garuda and Pari

6



Garuda and Pari
Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

6



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

6



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

6



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

Garuda: The first SNARK with free linear gates that support custom gates 

6



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

Garuda: The first SNARK with free linear gates that support custom gates 

6

> 3x faster than Groth16 (free linear gates) 
> 2x faster than HyperPlonk (custom gates)



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

Garuda: The first SNARK with free linear gates that support custom gates 

6

> 3x faster than Groth16 (free linear gates) 
> 2x faster than HyperPlonk (custom gates)

Both in ROM + AGM



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

Garuda: The first SNARK with free linear gates that support custom gates 

6

> 3x faster than Groth16 (free linear gates) 
> 2x faster than HyperPlonk (custom gates)

Both in ROM + AGM
Both Circuit-Specific



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

Garuda: The first SNARK with free linear gates that support custom gates 

6

> 3x faster than Groth16 (free linear gates) 
> 2x faster than HyperPlonk (custom gates)

Both in ROM + AGM
Both Circuit-Specific10-2

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

SuperSpartan (CCS)
Spartan (R1CS)

HP (Plonkish)
Groth16 (R1CS)

Pr
ov
er
tim

e
(s
)

Number of Rescue invocations



Garuda and Pari

Groth16Polymath [Lip24]
(on BLS12-381)

176 bytes 192 bytes144 bytes

 1𝔾1 + 1𝔾2|π | ≥

Pari: The smallest known SNARK with proof size  |π | = 2𝔾1 + 2𝔽

Pari

160 bytes

Garuda: The first SNARK with free linear gates that support custom gates 

6

> 3x faster than Groth16 (free linear gates) 
> 2x faster than HyperPlonk (custom gates)

Both in ROM + AGM
Both Circuit-Specific10-2

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

SuperSpartan (CCS)
Spartan (R1CS)

HP (Plonkish)
Groth16 (R1CS)

Pr
ov
er
tim

e
(s
)

Number of Rescue invocations



New Methodology

7

Preprocessing 
SNARK for 

R1CS
Our Compiler

PIOP

EPC Scheme

We adapt existing SNARK methodologies [CHMMVW20, BFS20] 
 to construct our SNARKsFewer responsibilities 

Only needs to be sound

More responsibilities 
PC + Equifficient property



Background



Background: Polynomial IOPs

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)
r1

…

rt

p1

pt

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)
r1

…

rt

p1

pt

Prover messages are (supposed to be)  
polynomial encodings

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)
r1

…

QUERYQrt

p1

pt

Prover messages are (supposed to be)  
polynomial encodings

Verifier queries are 
evaluation points

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)
r1

…

QUERYQ

DECISIONb

rt

p1

pt

Prover messages are (supposed to be)  
polynomial encodings

Verifier queries are 
evaluation points

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)
r1

…

QUERYQ

DECISIONb

rt

p1

pt

Prover messages are (supposed to be)  
polynomial encodings

Verifier queries are 
evaluation points

• Completeness: If , then  acceptsF(x, w) = 1 𝒱

9



Background: Polynomial IOPs

Prover 
 

 
 
 

(x, w)
Verifier 

 
 
 
 

(x)
r1

…

QUERYQ

DECISIONb

rt

p1

pt

Prover messages are (supposed to be)  
polynomial encodings

Verifier queries are 
evaluation points

• Completeness: If , then  acceptsF(x, w) = 1 𝒱
• Soundness: If , then  rejectsF(x, w) ≠ 1 𝒱

9



Background: PC schemes

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SETUP Maximum degree n

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)
2.v ← p(z)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)
2.v ← p(z)
3.π ← 𝖮𝗉𝖾𝗇(𝖼𝗄, 𝖼𝗆, p, z)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)
(v, π)

2.v ← p(z)
3.π ← 𝖮𝗉𝖾𝗇(𝖼𝗄, 𝖼𝗆, p, z)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)
(v, π)

2.v ← p(z)
3.π ← 𝖮𝗉𝖾𝗇(𝖼𝗄, 𝖼𝗆, p, z) 𝖢𝗁𝖾𝖼𝗄(𝗏𝗄, 𝖼𝗆, z, v, π)

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)
(v, π)

2.v ← p(z)
3.π ← 𝖮𝗉𝖾𝗇(𝖼𝗄, 𝖼𝗆, p, z) 𝖢𝗁𝖾𝖼𝗄(𝗏𝗄, 𝖼𝗆, z, v, π)

• Completeness: Whenever , the Receiver accepts.p(z) = v

10

Commit to a polynomial, and later on prove its correct evaluation



Background: PC schemes

SENDER 
 
 

RECEIVER 
 
 

𝖼𝗆
z

SETUP Maximum degree n Committer key  
Verifier key       

𝖼𝗄
𝗏𝗄

1.𝖼𝗆 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p)
(v, π)

2.v ← p(z)
3.π ← 𝖮𝗉𝖾𝗇(𝖼𝗄, 𝖼𝗆, p, z) 𝖢𝗁𝖾𝖼𝗄(𝗏𝗄, 𝖼𝗆, z, v, π)

• Completeness: Whenever , the Receiver accepts.p(z) = v
• Extractability: Whenever the Receiver accepts, the Sender’s commitment 

“contains” a polynomial  satisfying .
𝖼𝗆

p p(z) = v
10

Commit to a polynomial, and later on prove its correct evaluation



PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1 PC.COMMIT

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1 PC.COMMIT cm1

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1

PC.COMMIT cm1

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT cm1

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

pt

cm1

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

pt PC.COMMIT

cm1

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

pt PC.COMMIT

cm1

cmt

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

pt
rt

PC.COMMIT

cm1

cmt

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

pt
rt

PC.COMMIT

cm1

cmt

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

pt
rt

PC.COMMIT

cm1

cmt

Q

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

Q

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

(π, [v])

Q

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 
[CHMMVW20, BFS20]

11



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, 𝕚) 
 
 
 

max degree n
(ck, vk)

PIOP(𝕚) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP( ) n

PIOPs + PC Schemes → SNARK 

+ Fiat—Shamir to get non-interactivity

[CHMMVW20, BFS20]

11



Prior PIOP-based SNARKs for R1CS
[CHMMVW20, S21]

12



Prior PIOP-based SNARKs for R1CS
[CHMMVW20, S21]

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

12



Prior PIOP-based SNARKs for R1CS
[CHMMVW20, S21]

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

12

Linear checks: 
, , zA = Az zB = Bz zC = Cz



Prior PIOP-based SNARKs for R1CS
[CHMMVW20, S21]

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

12

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC



Prior PIOP-based SNARKs for R1CS
[CHMMVW20, S21]

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

12

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC



Prior PIOP-based SNARKs for R1CS

Usually quite cheap!
Rowcheck subPIOP

[CHMMVW20, S21]
R1CS consists of triples  such that the following holds for : 

, or equivalently the following checks are satisfied:
((A, B, C), x, w) z = (x, w)

Az ∘ Bz = Cz

12

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC

̂zA ̂zB ̂zC q𝒫 𝒱

Interpolations of zM



Prior PIOP-based SNARKs for R1CS

Usually quite cheap!
Rowcheck subPIOP

[CHMMVW20, S21]
R1CS consists of triples  such that the following holds for : 

, or equivalently the following checks are satisfied:
((A, B, C), x, w) z = (x, w)

Az ∘ Bz = Cz

Lincheck subPIOP
Usually most expensive part!

𝒫 𝒱

12

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC

̂zA ̂zB ̂zC q𝒫 𝒱

Interpolations of zM



Prior PIOP-based SNARKs for R1CS

Usually quite cheap!
Rowcheck subPIOP

̂zA ̂zB ̂zC q

[CHMMVW20, S21]

Lincheck subPIOP
Usually most expensive part!

𝒫 𝒱

13

𝒫 𝒱Compiles to only 4 group elements!

Requires numerous commitments, 
openings, and evaluation proofs 

In contrast, circuit-specific SNARKs like 
Groth16 require no extra group elements

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC



A New Lincheck



Linchecks via coefficient-equality

15



Linchecks via coefficient-equality

15

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 



Linchecks via coefficient-equality

15

A × z = zA

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 



Linchecks via coefficient-equality

15

A × z = zA

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 



Linchecks via coefficient-equality

15

A × z = zA

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 

… [ ]zA[]z1
z2
⋮
zn

[       ] =×a1 a2 a3 an



Linchecks via coefficient-equality

15

A × z = zA

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 

… [ ]zA[]z1
z2
⋮
zn

[       ] =×a1 a2 a3 an



Linchecks via coefficient-equality

15

A × z = zA

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 

… [ ]zA[]z1
z2
⋮
zn

[       ] =×a1 a2 a3 an

[ ]a1 + [ ]+
… [ ]+ = [ ]zA z1 ⋅  z2 ⋅  zn ⋅a2 an



Linchecks via coefficient-equality

16



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate -s over ai {1,…, n}

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate  over zA {1,…, n}Interpolate -s over ai {1,…, n}

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate  over zA {1,…, n}Interpolate -s over ai {1,…, n}

                               z1⋅ ̂a1(X) + z2 ⋅ ̂a2(X) + … + zn ⋅ ̂an(X) = ̂zA(X)

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate  over zA {1,…, n}Interpolate -s over ai {1,…, n}

̂zA(i) = ∑
j

̂aj(i) ⋅ z[ j]
Now we can express the 
Lincheck in the language of 
polynomials:

∀i ∈ {1,…, n},

                               z1⋅ ̂a1(X) + z2 ⋅ ̂a2(X) + … + zn ⋅ ̂an(X) = ̂zA(X)

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

17



Linchecks via coefficient-equality

17

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



Linchecks via coefficient-equality

17

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



Linchecks via coefficient-equality

17

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



Linchecks via coefficient-equality

17

Prover knows  such thatz ∈ 𝔽n

Coefficient-equality constraint

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



Linchecks via coefficient-equality

17

Prover knows  such thatz ∈ 𝔽n

̂zA(X) = z1 ⋅ ̂a1(X) + ⋯ + zn ⋅ ̂an(X)

̂zB(X) = z1 ⋅ b̂1(X) + ⋯ + zn ⋅ b̂n(X)
̂zC(X) = z1 ⋅ ̂c1(X) + ⋯ + zn ⋅ ̂cn(X)

Coefficient-equality constraint

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



Linchecks via coefficient-equality

17

Prover knows  such thatz ∈ 𝔽n

̂zA(X) = z1 ⋅ ̂a1(X) + ⋯ + zn ⋅ ̂an(X)

̂zB(X) = z1 ⋅ b̂1(X) + ⋯ + zn ⋅ b̂n(X)
̂zC(X) = z1 ⋅ ̂c1(X) + ⋯ + zn ⋅ ̂cn(X)

Coefficient-equality constraint

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



Linchecks via coefficient-equality

17

Prover knows  such thatz ∈ 𝔽n

̂zA(X) = z1 ⋅ ̂a1(X) + ⋯ + zn ⋅ ̂an(X)

̂zB(X) = z1 ⋅ b̂1(X) + ⋯ + zn ⋅ b̂n(X)
̂zC(X) = z1 ⋅ ̂c1(X) + ⋯ + zn ⋅ ̂cn(X)

Coefficient-equality constraint

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Same coefficients in all!

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  



New Approach for Lincheck

Usually quite cheap!
Rowcheck subPIOP

̂zA ̂zB ̂zC q

18

𝒫 𝒱

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC



New Approach for Lincheck

Usually quite cheap!
Rowcheck subPIOP

̂zA ̂zB ̂zC q

Lincheck via coefficient-equality

How to enforce?

18

𝒫 𝒱

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC

Equifficient Polynomial 
Commitment Schemes!



New Tool: EPC schemes



Equifficient constraints

20

A coefficient-equality or “equifficient” constraint is a set of bases 
  

  

where , ,  

E := {𝒜, ℬ, 𝒞}

𝒜 = {a1, …, an} ℬ = {b1, …, bn} 𝒞 = {c1, …, cn}



Equifficient constraints

Polynomials  are said to satisfy  if they have  
equal coefficient vectors under bases  respectively, i.e.:

̂zA(X), ̂zB(X), ̂zC(X) E
𝒜, ℬ, 𝒞

20

A coefficient-equality or “equifficient” constraint is a set of bases 
  

  

where , ,  

E := {𝒜, ℬ, 𝒞}

𝒜 = {a1, …, an} ℬ = {b1, …, bn} 𝒞 = {c1, …, cn}

̂zA = z1 ⋅ ̂a1 + ⋯ + zn ⋅ ̂an

̂zB = z1 ⋅ b̂1 + ⋯ + zn ⋅ b̂n

̂zC = z1 ⋅ ̂c1 + ⋯ + zn ⋅ ̂cn



Equifficient constraints

Polynomials  are said to satisfy  if they have  
equal coefficient vectors under bases  respectively, i.e.:

̂zA(X), ̂zB(X), ̂zC(X) E
𝒜, ℬ, 𝒞

20

A coefficient-equality or “equifficient” constraint is a set of bases 
  

  

where , ,  

E := {𝒜, ℬ, 𝒞}

𝒜 = {a1, …, an} ℬ = {b1, …, bn} 𝒞 = {c1, …, cn}

̂zA = z1 ⋅ ̂a1 + ⋯ + zn ⋅ ̂an

̂zB = z1 ⋅ b̂1 + ⋯ + zn ⋅ b̂n

̂zC = z1 ⋅ ̂c1 + ⋯ + zn ⋅ ̂cn



Equifficient PC (EPC) schemes

21



Equifficient PC (EPC) schemes
SETUP Maximum degree n Public parameter 𝗉𝗉

21



Equifficient PC (EPC) schemes
SETUP Maximum degree n Public parameter 𝗉𝗉

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

cm

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt
2.  ,  …, v1 ← p1(r) vt ← pt(r)

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt
2.  ,  …, v1 ← p1(r) vt ← pt(r)
3.π ← OPEN(ok, cm, , )p1, …, pt r

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

(v, π)
2.  ,  …, v1 ← p1(r) vt ← pt(r)
3.π ← OPEN(ok, cm, , )p1, …, pt r

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

(v, π)
2.  ,  …, v1 ← p1(r) vt ← pt(r)
3.π ← OPEN(ok, cm, , )p1, …, pt r CHECK(vk, cm,  ,  π)z, v1, …, vt

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

(v, π)
2.  ,  …, v1 ← p1(r) vt ← pt(r)
3.π ← OPEN(ok, cm, , )p1, …, pt r CHECK(vk, cm,  ,  π)z, v1, …, vt

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

Samples private randomness

21



Equifficient PC (EPC) schemes

SENDER 
 
 

RECEIVER 
 
 

SETUP Maximum degree n Public parameter 𝗉𝗉

1.cm ← COMMIT(ck, )p1, …, pt

(v, π)
2.  ,  …, v1 ← p1(r) vt ← pt(r)
3.π ← OPEN(ok, cm, , )p1, …, pt r CHECK(vk, cm,  ,  π)z, v1, …, vt

SPECIALIZE 
Equifficient constraint E

Public parameters 𝗉𝗉

Committer key     
 Verifier key          
 Opening key      

𝖼𝗄
𝗏𝗄
𝗈𝗄

r
cm

Samples private randomness

21

Constraint-specific keys



Properties of EPC schemes

22



Properties of EPC schemes
Completeness:  
If the committed polynomials  
• satisfy the evaluation claims ( ), and 
• satisfy the equifficient constraints, 
then the receiver accepts the evaluation proof

p1(z) = v1, …, pn(z) = vn

22



Properties of EPC schemes

Extractability

Completeness:  
If the committed polynomials  
• satisfy the evaluation claims ( ), and 
• satisfy the equifficient constraints, 
then the receiver accepts the evaluation proof

p1(z) = v1, …, pn(z) = vn

22



Properties of EPC schemes

Extractability

Completeness:  
If the committed polynomials  
• satisfy the evaluation claims ( ), and 
• satisfy the equifficient constraints, 
then the receiver accepts the evaluation proof

p1(z) = v1, …, pn(z) = vn

If adversary outputs a commitment & proof that convinces the receiver, then it 
must know  such that the following holds: 

• PC Extractability:  

• Equifficient constraint satisfaction: 

p1, …, pn
p1(z) = v1, …, pn(z) = vn

p1, …, pn are equifficient wrt E

22



KZG-based EPC Construction



KZG-based EPC Construction
Step 1: Using regular KZG, commit to the polynomials and ̂zA, ̂zB, ̂zC



KZG-based EPC Construction
Step 1: Using regular KZG, commit to the polynomials and ̂zA, ̂zB, ̂zC

𝖼𝗄 = (1 ⋅ G, τ ⋅ G, τ2 ⋅ G, …, τn−1 ⋅ G)



KZG-based EPC Construction
Step 1: Using regular KZG, commit to the polynomials and ̂zA, ̂zB, ̂zC

𝖼𝗄 = (1 ⋅ G, τ ⋅ G, τ2 ⋅ G, …, τn−1 ⋅ G)

𝖪𝖹𝖦 . 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, ̂zA) → cA
𝖪𝖹𝖦 . 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, ̂zB) → cB
𝖪𝖹𝖦 . 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, ̂zC) → cC

where    for cM := ∑
i

zM[i] ⋅ τi ⋅ G M ∈ {A, B, C}



KZG-based EPC Construction



KZG-based EPC Construction
Step 2: Enforce the coefficient-equality constraint. 



KZG-based EPC Construction
Step 2: Enforce the coefficient-equality constraint. 

 E := {𝒜, ℬ, 𝒞}

To do this, first we construct committer keys that encode each basis… 



KZG-based EPC Construction
Step 2: Enforce the coefficient-equality constraint. 

 E := {𝒜, ℬ, 𝒞}

To do this, first we construct committer keys that encode each basis… 

𝒜 = { ̂a1, …, ̂an}

ℬ = {b̂1, …, b̂n}

𝒞 = { ̂c1, …, ̂cn}

𝖼𝗄A = [ ̂a1(τ)G, ̂a2(τ)G, ̂a3(τ)G, …, ̂an(τ)G]
𝖼𝗄B = [b̂1(τ)G, b̂2(τ)G, b̂3(τ)G, …, b̂n(τ)G]
𝖼𝗄C = [ ̂c1(τ)G, ̂c2(τ)G, ̂c3(τ)G, …, ̂cn(τ)G]



KZG-based EPC Construction



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

    +α ⋅ 𝖼𝗄A
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]

    +     =β ⋅ 𝖼𝗄B

   γ ⋅ 𝖼𝗄C

    =𝖼𝗄*



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

    +α ⋅ 𝖼𝗄A
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]

    +     =β ⋅ 𝖼𝗄B

   γ ⋅ 𝖼𝗄C

    =𝖼𝗄*



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

    +α ⋅ 𝖼𝗄A
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]

    +     =β ⋅ 𝖼𝗄B

   γ ⋅ 𝖼𝗄C

    =𝖼𝗄*

                              +  +  +  + 
                              +  +  +  + 
                               +  +  +  

α ⋅ ( z1 ⋅ ̂a1(τ) z2 ⋅ ̂a2(τ) … zn ⋅ ̂an(τ)) ⋅ G
β ⋅ ( z1 ⋅ b̂1(τ) z2 ⋅ b̂2(τ) … zn ⋅ b̂n(τ)) ⋅ G
γ ⋅ ( z1 ⋅ ̂c1(τ) z2 ⋅ ̂c2(τ) … zn ⋅ ̂cn(τ)) ⋅ G

     =      = c* ⟨z, 𝖼𝗄*⟩



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

    +α ⋅ 𝖼𝗄A
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]

    +     =β ⋅ 𝖼𝗄B

   γ ⋅ 𝖼𝗄C

    =𝖼𝗄*

                              +  +  +  + 
                              +  +  +  + 
                               +  +  +  

α ⋅ ( z1 ⋅ ̂a1(τ) z2 ⋅ ̂a2(τ) … zn ⋅ ̂an(τ)) ⋅ G
β ⋅ ( z1 ⋅ b̂1(τ) z2 ⋅ b̂2(τ) … zn ⋅ b̂n(τ)) ⋅ G
γ ⋅ ( z1 ⋅ ̂c1(τ) z2 ⋅ ̂c2(τ) … zn ⋅ ̂cn(τ)) ⋅ G

     =      = c* ⟨z, 𝖼𝗄*⟩



KZG-based EPC Construction



KZG-based EPC Construction

 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, (zA(X), zB(X), zC(X))) → cA, cB, cC , c*
 , cA = zA(τ) ⋅ G, cB = zB(τ) ⋅ G cC = zC(τ) ⋅ G

Consistency 
Commitment  =    +   +    c* ( α ⋅ ̂zA(τ) β ⋅ ̂zB(τ) γ ⋅ ̂zC(τ) ) ⋅ G



KZG-based EPC Construction
Equifficient

 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, (zA(X), zB(X), zC(X))) → cA, cB, cC , c*
 , cA = zA(τ) ⋅ G, cB = zB(τ) ⋅ G cC = zC(τ) ⋅ G

Consistency 
Commitment  =    +   +    c* ( α ⋅ ̂zA(τ) β ⋅ ̂zB(τ) γ ⋅ ̂zC(τ) ) ⋅ G



KZG-based EPC Construction



KZG-based EPC Construction
Step 4: Now, in the EPC check, do regular KZG verifications for each of  

 and  plus a consistency check using our new commitment   cA, cB cC c *



KZG-based EPC Construction

EPC Check KZG Check + Consistency check

Step 4: Now, in the EPC check, do regular KZG verifications for each of  
 and  plus a consistency check using our new commitment   cA, cB cC c *



KZG-based EPC Construction

EPC Check KZG Check + Consistency check

KZG Check
Pass/fail← KZG.CHECK( , ,   )𝗏𝗄 cA vA, πA

Pass/fail← KZG.CHECK( , )𝗏𝗄 cB, vB, πB

Pass/fail ← KZG.CHECK( , )𝗏𝗄 cC, vC, πC

Step 4: Now, in the EPC check, do regular KZG verifications for each of  
 and  plus a consistency check using our new commitment   cA, cB cC c *



KZG-based EPC Construction

EPC Check KZG Check + Consistency check

KZG Check
Pass/fail← KZG.CHECK( , ,   )𝗏𝗄 cA vA, πA

Pass/fail← KZG.CHECK( , )𝗏𝗄 cB, vB, πB

Pass/fail ← KZG.CHECK( , )𝗏𝗄 cC, vC, πC

Step 4: Now, in the EPC check, do regular KZG verifications for each of  
 and  plus a consistency check using our new commitment   cA, cB cC c *



KZG-based EPC Construction

EPC Check KZG Check + Consistency check

KZG Check
Pass/fail← KZG.CHECK( , ,   )𝗏𝗄 cA vA, πA

Pass/fail← KZG.CHECK( , )𝗏𝗄 cB, vB, πB

Pass/fail ← KZG.CHECK( , )𝗏𝗄 cC, vC, πC

Consistency check

 e(c*, H) ?= ∏
M∈{A,B,C}

e(cM, 𝗏𝗄M)

Step 4: Now, in the EPC check, do regular KZG verifications for each of  
 and  plus a consistency check using our new commitment   cA, cB cC c *



KZG-based EPC Construction

EPC Check KZG Check + Consistency check

KZG Check
Pass/fail← KZG.CHECK( , ,   )𝗏𝗄 cA vA, πA

Pass/fail← KZG.CHECK( , )𝗏𝗄 cB, vB, πB

Pass/fail ← KZG.CHECK( , )𝗏𝗄 cC, vC, πC

Consistency check

 e(c*, H) ?= ∏
M∈{A,B,C}

e(cM, 𝗏𝗄M)

Step 4: Now, in the EPC check, do regular KZG verifications for each of  
 and  plus a consistency check using our new commitment   cA, cB cC c *

These proofs are computed by 
KZG.Open, which we omit for simplicity!



Our SNARK Construction



R1CS SNARKs from PIOPs + EPC Schemes

Preprocessing 
zkSNARKCompiler

PIOP for rowcheck

EPC Scheme

29



SETUP( ) 
 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30



P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

SETUP( ) 
 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

SETUP( ) 
 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

̂zC

EPC.COMMIT 𝖼𝗆
SETUP( ) 

 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

̂zC

EPC.COMMIT 𝖼𝗆
SETUP( ) 

 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

̂zC

EPC.COMMIT 𝖼𝗆
SETUP( ) 

 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

̂zC

EPC.COMMIT 𝖼𝗆
SETUP( ) 

 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1

rk



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

QUERY

̂zC

EPC.COMMIT 𝖼𝗆
SETUP( ) 

 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1

rk

Q



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

QUERY

EPC.OPEN

̂zC

EPC.COMMIT 𝖼𝗆
SETUP( ) 

 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1

rk

Q



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

QUERY

EPC.OPEN

̂zC

EPC.COMMIT 𝖼𝗆

π, (vA, vB, vC, vq)

SETUP( ) 
 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1

rk

Q



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

QUERY

EPC.OPEN

̂zC

EPC.COMMIT 𝖼𝗆

DECISIONπ, (vA, vB, vC, vq) EPC.CHECK

SETUP( ) 
 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1

rk

Q



V(vk, 𝕩) 
 
 
 
 
 

P(pk, 𝕩, 𝕨) 
 
 
 
 
 PI

O
P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

̂zA

QUERY

EPC.OPEN

̂zC

EPC.COMMIT 𝖼𝗆

DECISIONπ, (vA, vB, vC, vq) EPC.CHECK

SETUP( ) 
 
 
 
 
 

1λ, A, B, C
n

𝗉𝗉
PIOP( ) A, B, C

prover key  
verifier key 

𝖼𝗄
𝗏𝗄

output 

EPC.SETUP( ) n

PIOPs + EPC Schemes → SNARK 

+ Fiat—Shamir to get non-interactivity

̂zB

( )𝖼𝗄, 𝗏𝗄

EPC.SPECIALIZE( ) 𝗉𝗉, E = (𝒜, ℬ, 𝒞)

30

r1

rk

Q



Properties of our construction

31



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!

Efficiency: 



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!

Efficiency: 
• Proof size: # commitments + # evals + evaluation proof



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!

Efficiency: 
• Proof size: # commitments + # evals + evaluation proof
• Prover time: time for PIOP prover + time to EPC.Commit and EPC.Open



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!

Efficiency: 
• Proof size: # commitments + # evals + evaluation proof
• Prover time: time for PIOP prover + time to EPC.Commit and EPC.Open
• Verifier time: time for PIOP verifier + time for EPC.Check



Properties of our construction

31

Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!

Efficiency: 
• Proof size: # commitments + # evals + evaluation proof
• Prover time: time for PIOP prover + time to EPC.Commit and EPC.Open
• Verifier time: time for PIOP verifier + time for EPC.Check
Note: Our construction does not achieve Zero-knowledge; we leave this to future work



Instantiations: Garuda and Pari

32



Instantiations: Garuda and Pari
UNIVARIATE ROWSAT PIOP

UNIVARIATE EPC (KZG-BASED)

+ Pari

• SNARK for Square R1CS [GM17] 

• Quasi-Linear Prover 

• Verification needs 3 pairings 

• Proof size 2 field + 2 group elements

32



Instantiations: Garuda and Pari
UNIVARIATE ROWSAT PIOP

UNIVARIATE EPC (KZG-BASED)

+ Pari

• SNARK for Square R1CS [GM17] 

• Quasi-Linear Prover 

• Verification needs 3 pairings 

• Proof size 2 field + 2 group elements

MULTIVARIATE ROWSAT PIOP

MULTIVARIATE EPC (PST-BASED)

+ Garuda

• Generalize R1CS for custom gates 

• Linear-Time Prover 

• Logarithmic verifier and proof size 

• Free addition gates

32



Instantiations: Garuda and Pari
UNIVARIATE ROWSAT PIOP

UNIVARIATE EPC (KZG-BASED)

+ Pari

• SNARK for Square R1CS [GM17] 

• Quasi-Linear Prover 

• Verification needs 3 pairings 

• Proof size 2 field + 2 group elements

MULTIVARIATE ROWSAT PIOP

MULTIVARIATE EPC (PST-BASED)

+ Garuda

• Generalize R1CS for custom gates 

• Linear-Time Prover 

• Logarithmic verifier and proof size 

• Free addition gates

32

Both require circuit-specific trusted setup =(



Implementation and Evaluation

33



Implementation in arkworks

34

GR1CS programming infrastructure, backward-compatible with R1CS

Garuda Implementation + Pari Implementation

Automatic Solidity Smart contract generator for Pari



Evaluation for Pari 

35



Evaluation for Pari 

35

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves



Evaluation for Pari 

35

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves
600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves



Evaluation for Pari 

35

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves



Evaluation for Pari 

35

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves



Evaluation for Pari 

35

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Pari 

35

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

1

2

3

4

5
6
7
8
9
10

20 21 22 23 24 25 26 27

Pari
Groth16

Polymath
FFLONK

G
as

C
os
t(
×1
0⁴
)

Input Size

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Pari 

35

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

0.01

0.1

1

10

100

1000

10 11 12 13 14 15 16 17 18 19 20 21 22

Pari Groth16 Polymath

Pr
ov
er
Ti
m
e
(s
)

Log of Number of R1CS Constraints

1

2

3

4

5
6
7
8
9
10

20 21 22 23 24 25 26 27

Pari
Groth16

Polymath
FFLONK

G
as

C
os
t(
×1
0⁴
)

Input Size

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Pari 

35

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

0.01

0.1

1

10

100

1000

10 11 12 13 14 15 16 17 18 19 20 21 22

Pari Groth16 Polymath

Pr
ov
er
Ti
m
e
(s
)

Log of Number of R1CS Constraints

1

2

3

4

5
6
7
8
9
10

20 21 22 23 24 25 26 27

Pari
Groth16

Polymath
FFLONK

G
as

C
os
t(
×1
0⁴
)

Input Size

600

Bls12-381 (128-bit) Bls12-638 (256-bit)

416320
160

464
352

176

512
384

192

Proof size for BLS curves

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

Comparison with Groth16: 
< 2x slower prover 

Comparison with Polymath: 
~ 30% faster prover 

600

Bn254 (100-bit) Bn384 (128-bit) Bn512I (192-bit) Bn638 (256-bit)

416320224128

464
352

240
128

512
384

256
128

Proof size for BN curves

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Garuda 

36



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit

4

6

8

10

12

14

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

Hyperplonk (Plonkish)
Groth16 (R1CS)

Ve
rifi
ca
tio
n
tim

e
(m
s)

Number of Rescue invocations



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit

4

6

8

10

12

14

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

Hyperplonk (Plonkish)
Groth16 (R1CS)

Ve
rifi
ca
tio
n
tim

e
(m
s)

Number of Rescue invocations

103

104
104
104
104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

HP
Groth16 (R1CS)

Pr
oo
fs
iz
e
(B
yt
es
)

Number of Rescue invocations



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit

4

6

8

10

12

14

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

Hyperplonk (Plonkish)
Groth16 (R1CS)

Ve
rifi
ca
tio
n
tim

e
(m
s)

Number of Rescue invocations

103

104
104
104
104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

HP
Groth16 (R1CS)

Pr
oo
fs
iz
e
(B
yt
es
)

Number of Rescue invocations

10-2

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

SuperSpartan (CCS)
Spartan (R1CS)

HP (Plonkish)
Groth16 (R1CS)

Pr
ov
er
tim

e
(s
)

Number of Rescue invocations



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit

4

6

8

10

12

14

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

Hyperplonk (Plonkish)
Groth16 (R1CS)

Ve
rifi
ca
tio
n
tim

e
(m
s)

Number of Rescue invocations

103

104
104
104
104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

HP
Groth16 (R1CS)

Pr
oo
fs
iz
e
(B
yt
es
)

Number of Rescue invocations

10-2

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

SuperSpartan (CCS)
Spartan (R1CS)

HP (Plonkish)
Groth16 (R1CS)

Pr
ov
er
tim

e
(s
)

Number of Rescue invocations

Comparison with Hyperplonk: 
~ 2x faster verifier 

Comparison with Groth16: 
~ 2x slower verifier 



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit

4

6

8

10

12

14

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

Hyperplonk (Plonkish)
Groth16 (R1CS)

Ve
rifi
ca
tio
n
tim

e
(m
s)

Number of Rescue invocations

103

104
104
104
104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

HP
Groth16 (R1CS)

Pr
oo
fs
iz
e
(B
yt
es
)

Number of Rescue invocations

10-2

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

SuperSpartan (CCS)
Spartan (R1CS)

HP (Plonkish)
Groth16 (R1CS)

Pr
ov
er
tim

e
(s
)

Number of Rescue invocations

Comparison with Hyperplonk: 
~ 2x faster verifier 

Comparison with Groth16: 
~ 2x slower verifier 

Comparison with Groth16: 
~ 30x bigger 

Comparison with Polymath: 
~ 2x smaller 



Evaluation for Garuda 

36

Rescue 
Hash

Rescue 
Hash

Rescue 
HashSame Hash-Chain circuit

4

6

8

10

12

14

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

Hyperplonk (Plonkish)
Groth16 (R1CS)

Ve
rifi
ca
tio
n
tim

e
(m
s)

Number of Rescue invocations

103

104
104
104
104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

HP
Groth16 (R1CS)

Pr
oo
fs
iz
e
(B
yt
es
)

Number of Rescue invocations

10-2

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Garuda (GR1CS)
Garuda (R1CS)

SuperSpartan (CCS)
Spartan (R1CS)

HP (Plonkish)
Groth16 (R1CS)

Pr
ov
er
tim

e
(s
)

Number of Rescue invocations

Comparison with Hyperplonk: 
~ 2x faster verifier 

Comparison with Groth16: 
~ 2x slower verifier 

Comparison with Groth16: 
~ 30x bigger 

Comparison with Polymath: 
~ 2x smaller 

Comparison with Groth16: 
3x faster 

Comparison with Polymath: 
2x faster 



Thanks!

37

Open questions 

• Our EPC constructions imply circuit-specific setup 
Q: can we construct EPC schemes that achieve universal setup? 

• What other applications of EPC schemes can we find? 
Ideas: Verifiable Secret Sharing, Accumulators, etc?  

• Our SNARKs don’t achieve ZK. 
Q: How can we demonstrate ZK without increasing the proof size?

github: github.com/alireza-shirzad/garuda-pari



Thanks!
ePrint: https://eprint.iacr.org/2024/1245

37

Open questions 

• Our EPC constructions imply circuit-specific setup 
Q: can we construct EPC schemes that achieve universal setup? 

• What other applications of EPC schemes can we find? 
Ideas: Verifiable Secret Sharing, Accumulators, etc?  

• Our SNARKs don’t achieve ZK. 
Q: How can we demonstrate ZK without increasing the proof size?

github: github.com/alireza-shirzad/garuda-pari



Evaluation for Pari 

38



Evaluation for Pari 

38



Evaluation for Pari 

38

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit



Evaluation for Pari 

38

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit



Evaluation for Pari 

38

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Pari 

38

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

1

2

3

4

5
6
7
8
9
10

20 21 22 23 24 25 26 27

Pari
Groth16

Polymath
FFLONK

G
as

C
os
t(
×1
0⁴
)

Input Size

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Pari 

38

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

0.01

0.1

1

10

100

1000

10 11 12 13 14 15 16 17 18 19 20 21 22

Pari Groth16 Polymath

Pr
ov
er
Ti
m
e
(s
)

Log of Number of R1CS Constraints

1

2

3

4

5
6
7
8
9
10

20 21 22 23 24 25 26 27

Pari
Groth16

Polymath
FFLONK

G
as

C
os
t(
×1
0⁴
)

Input Size

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



Evaluation for Pari 

38

0.1

1

10

100

1000

20 21 22 23 24 25 26 27 28 29 210 211

Pari Groth16 Polymath

Ve
rifi
ca
tio
n
Ti
m
e
(m
s)

Input Size

0.01

0.1

1

10

100

1000

10 11 12 13 14 15 16 17 18 19 20 21 22

Pari Groth16 Polymath

Pr
ov
er
Ti
m
e
(s
)

Log of Number of R1CS Constraints

1

2

3

4

5
6
7
8
9
10

20 21 22 23 24 25 26 27

Pari
Groth16

Polymath
FFLONK

G
as

C
os
t(
×1
0⁴
)

Input Size

Rescue 
Hash

Rescue 
Hash

Rescue 
HashBenchmark results for a Hash-Chain circuit

Comparison with Groth16: 
< 2x slower prover 

Comparison with Polymath: 
~ 30% faster prover 

Comparison with Groth16: 
No verifier MSM 

0.2 ms worse for #io=1 

Comparison with Polymath: 
~ 15% faster verifier 



KZG-based EPC Construction



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

=    +    +       𝖼𝗄* α ⋅ 𝖼𝗄A β ⋅ 𝖼𝗄B γ ⋅ 𝖼𝗄C =



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

=    +    +       𝖼𝗄* α ⋅ 𝖼𝗄A β ⋅ 𝖼𝗄B γ ⋅ 𝖼𝗄C =
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

These are random numbers in {1,…, n}

=    +    +       𝖼𝗄* α ⋅ 𝖼𝗄A β ⋅ 𝖼𝗄B γ ⋅ 𝖼𝗄C =
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

These are random numbers in {1,…, n}

=    +    +       𝖼𝗄* α ⋅ 𝖼𝗄A β ⋅ 𝖼𝗄B γ ⋅ 𝖼𝗄C =
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

These are random numbers in {1,…, n}

 =    +  +  +  + 
                              +  +  +  + 
                               +  +  +  

c * = ⟨z, 𝖼𝗄*⟩ α ⋅ ( z1 ⋅ ̂a1(τ) z2 ⋅ ̂a2(τ) … zn ⋅ ̂an(τ)) ⋅ G
β ⋅ ( z1 ⋅ b̂1(τ) z2 ⋅ b̂2(τ) … zn ⋅ b̂n(τ)) ⋅ G
γ ⋅ ( z1 ⋅ ̂c1(τ) z2 ⋅ ̂c2(τ) … zn ⋅ ̂cn(τ)) ⋅ G

=    +    +       𝖼𝗄* α ⋅ 𝖼𝗄A β ⋅ 𝖼𝗄B γ ⋅ 𝖼𝗄C =
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

These are random numbers in {1,…, n}

 =    +  +  +  + 
                              +  +  +  + 
                               +  +  +  

c * = ⟨z, 𝖼𝗄*⟩ α ⋅ ( z1 ⋅ ̂a1(τ) z2 ⋅ ̂a2(τ) … zn ⋅ ̂an(τ)) ⋅ G
β ⋅ ( z1 ⋅ b̂1(τ) z2 ⋅ b̂2(τ) … zn ⋅ b̂n(τ)) ⋅ G
γ ⋅ ( z1 ⋅ ̂c1(τ) z2 ⋅ ̂c2(τ) … zn ⋅ ̂cn(τ)) ⋅ G

=    +    +       𝖼𝗄* α ⋅ 𝖼𝗄A β ⋅ 𝖼𝗄B γ ⋅ 𝖼𝗄C =
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
  +β ⋅[ b̂1(τ) G, b̂2(τ) G, … b̂n(τ) G ]
 γ ⋅[ ̂c1(τ) G, ̂c2(τ) G, … ̂cn(τ) G ]



KZG-based EPC Construction

⋮



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

⋮



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

⋮𝖼𝗄 * = α ⋅ 𝖼𝗄A + β ⋅ 𝖼𝗄B + γ ⋅ 𝖼𝗄C [       ](α ⋅ a1(τ) + β ⋅ b1(τ) + γ ⋅ c1(τ)) ⋅ G

(α ⋅ an(τ) + β ⋅ bn(τ) + γ ⋅ cn(τ)) ⋅ GThese are random numbers in {1,…, n}

=



KZG-based EPC Construction
Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

⋮𝖼𝗄 * = α ⋅ 𝖼𝗄A + β ⋅ 𝖼𝗄B + γ ⋅ 𝖼𝗄C [       ](α ⋅ a1(τ) + β ⋅ b1(τ) + γ ⋅ c1(τ)) ⋅ G

(α ⋅ an(τ) + β ⋅ bn(τ) + γ ⋅ cn(τ)) ⋅ GThese are random numbers in {1,…, n}

=

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

c* = ⟨z, 𝖼𝗄*⟩ = (α ⋅ ̂zA(τ) + β ⋅ ̂zB(τ) + γ ⋅ ̂zC(τ)) ⋅ G

This is the consistency commitment!



Pari

41



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

42



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

42



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

42
Note: For simplicity, we assume that public input length is 0.



43

KZG Polynomial Commitment Scheme for  and p1 p2



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

43

KZG Polynomial Commitment Scheme for  and p1 p2



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → 𝖼𝗆 := (c1 = p1(τ)G, c2 = p2(τ)G)

43

KZG Polynomial Commitment Scheme for  and p1 p2



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → 𝖼𝗆 := (c1 = p1(τ)G, c2 = p2(τ)G)

• 𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = ( π1 = w1(τ)G , π2 = w2(τ)G )

W2(X) =
p2(X) − p2(z)

X − z

43

KZG Polynomial Commitment Scheme for  and p1 p2

w1(X) =
p1(X) − p1(z)

X − z



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → 𝖼𝗆 := (c1 = p1(τ)G, c2 = p2(τ)G)

• 𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = ( π1 = w1(τ)G , π2 = w2(τ)G )

W2(X) =
p2(X) − p2(z)

X − z
• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖼𝗆, z, v = (v1, v2)) → {0,1}

  e(c1, H) ?= e(π1, τH − zH) ⋅ e(p1(z)G, H)

e(c2, H) ?= e(π2, τH − zH) ⋅ e(p2(z)G, H)
43

KZG Polynomial Commitment Scheme for  and p1 p2

w1(X) =
p1(X) − p1(z)

X − z



44

KZG-based EPC (Setup and Specialize)



𝖲𝖾𝗍𝗎𝗉(n) → 𝗉𝗉

𝗉𝗉 = (G, τG, τ2G, …, τnG)

44

KZG-based EPC (Setup and Specialize)



𝖲𝖾𝗍𝗎𝗉(n) → 𝗉𝗉

𝗉𝗉 = (G, τG, τ2G, …, τnG)

44

KZG-based EPC (Setup and Specialize)

𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾(𝗉𝗉, E = (𝒜, ℬ)) → (𝖼𝗄, 𝗏𝗄)

 𝖼𝗄 = (G, τG, τ2G, …, τnG) ∪ (( ai(τ) + bi(τ))G)n
1=1

 𝗏𝗄 := τH , H, H

𝒜 = (ai(x))n
i=1 ℬ = (bi(x))n

i=1

α

α

β

β

Sample , ∈ 𝔽α β



45

KZG-based EPC (Commit)



45

KZG-based EPC (Commit)

 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → c1, c2 , c*
c1 = p1(τ)G, c2 = p2(τ)G

Equifficient



45

KZG-based EPC (Commit)

 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → c1, c2 , c*
c1 = p1(τ)G, c2 = p2(τ)G




                    


                    

c* = ( p1(τ) + p2(τ))G

= ⟨p1, (( ai(τ) + bi(τ))G)n
1=1

⟩

= ⟨p2, (( ai(τ) + bi(τ))G)n
1=1

⟩

α

α

β

β

βα

Consistency 
Commitment

Equifficient



46

KZG-based EPC (Open & Verify)



46

KZG-based EPC (Open & Verify)
𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = (π1 = w1(τ)G , π2 = w2(τ)G)

w1(x) =
p1(X) − p1(z)

X − z
w2(X) =

p2(X) − p2(z)
X − z



46

KZG-based EPC (Open & Verify)
𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = (π1 = w1(τ)G , π2 = w2(τ)G)

w1(x) =
p1(X) − p1(z)

X − z
w2(X) =

p2(X) − p2(z)
X − z

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖼𝗆, z, v = {v1, v2}) → {0,1}

e(c1, H) ?= e(π1, τH − zH) ⋅ e(p1(z)G, H)
e(c2, H) ?= e(π2, τH − zH) ⋅ e(p2(z)G, H)

e(c*G, H) ?= e(c1, H) + e(c2, H)α β



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

• 𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾(𝗉𝗉, E = (𝒜, ℬ)) → ck, vk

• 𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = (π1, π2)

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖼𝗆, z, v = (v1, v2)) → {0,1}

  e(c1, H) ?= e(π1, τH − zH) ⋅ e(p(z)G, H)

e(c2, H) ?= e(π2, τH − zH) ⋅ e(p(z)G, H)

47

KZG-based EPC for  and p1 p2

e(c*, H) ?= e(c1, αH) + e(c2, βH)

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → 𝖼𝗆 = (c1, c2, c*)



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

• 𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾(𝗉𝗉, E = (𝒜, ℬ)) → ck, vk

• 𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = (π1, π2)

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖼𝗆, z, v = (v1, v2)) → {0,1}

  e(c1, H) ?= e(π1, τH − zH) ⋅ e(p(z)G, H)

e(c2, H) ?= e(π2, τH − zH) ⋅ e(p(z)G, H)

47

KZG-based EPC for  and p1 p2

e(c*, H) ?= e(c1, αH) + e(c2, βH)

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → 𝖼𝗆 = (c1, c2, c*)

 elements for commitment3𝔾



• 𝖲𝖾𝗍𝗎𝗉(D) → 𝗉𝗉 = (G, τG, τ2G, …, τnG)

• 𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾(𝗉𝗉, E = (𝒜, ℬ)) → ck, vk

• 𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = (π1, π2)

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖼𝗆, z, v = (v1, v2)) → {0,1}

  e(c1, H) ?= e(π1, τH − zH) ⋅ e(p(z)G, H)

e(c2, H) ?= e(π2, τH − zH) ⋅ e(p(z)G, H)

47

KZG-based EPC for  and p1 p2

e(c*, H) ?= e(c1, αH) + e(c2, βH)

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → 𝖼𝗆 = (c1, c2, c*)

 elements for commitment3𝔾

 elements for opening2𝔾



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

48



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

48



RowCheck PIOP

49



RowCheck PIOP

49

PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)



RowCheck PIOP

49

PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)

Let  be the vanishing polynomialt(X) = (X − 1)(X − 2)…(X − m)



RowCheck PIOP

49

PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)

Let  be the vanishing polynomialt(X) = (X − 1)(X − 2)…(X − m)
  ↔︎ : t(X) | ̂zA(X) ̂zB(X) − ̂zC(X) ∃q(X) ̂zA(X) ̂zB(X) − ̂zC(X) = t(X)q(X)



RowCheck PIOP

49

PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)

Let  be the vanishing polynomialt(X) = (X − 1)(X − 2)…(X − m)
  ↔︎ : t(X) | ̂zA(X) ̂zB(X) − ̂zC(X) ∃q(X) ̂zA(X) ̂zB(X) − ̂zC(X) = t(X)q(X)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

q

̂zC

̂zB

̂zA

q(X) =
̂za(X) ⋅ ̂zb(X)

̂zc(X)



RowCheck PIOP

49

PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)

Let  be the vanishing polynomialt(X) = (X − 1)(X − 2)…(X − m)
  ↔︎ : t(X) | ̂zA(X) ̂zB(X) − ̂zC(X) ∃q(X) ̂zA(X) ̂zB(X) − ̂zC(X) = t(X)q(X)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

q

̂zC

̂zB

̂zA



≟


̂zA(r) ⋅ ̂zB(r) − ̂zC(r)

t(r) ⋅ q(r)
q(X) =

̂za(X) ⋅ ̂zb(X)
̂zc(X)



RowCheck PIOP

49

PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)

Let  be the vanishing polynomialt(X) = (X − 1)(X − 2)…(X − m)
  ↔︎ : t(X) | ̂zA(X) ̂zB(X) − ̂zC(X) ∃q(X) ̂zA(X) ̂zB(X) − ̂zC(X) = t(X)q(X)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
R

q

̂zC

̂zB

̂zA



≟


̂zA(r) ⋅ ̂zB(r) − ̂zC(r)

t(r) ⋅ q(r)

Note: In practice, We replace with a smooth multiplicative subgroup {1,…, m}

q(X) =
̂za(X) ⋅ ̂zb(X)

̂zc(X)



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

50



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

50



Result of Compilation

51



Result of Compilation

51

After compiling the Rowcheck with univariate EPC We achieve a 
SNARK with the proof size  |π | =



Result of Compilation

51

 
( opening proofs for polynomials  )

4𝔾
̂zA, ̂zB, ̂zC, q

After compiling the Rowcheck with univariate EPC We achieve a 
SNARK with the proof size  |π | =



Result of Compilation

51

 
( opening proofs for polynomials  )

4𝔾
̂zA, ̂zB, ̂zC, q

 
for the evaluations: 

4𝔽
vA, vB, vC, vq

After compiling the Rowcheck with univariate EPC We achieve a 
SNARK with the proof size  |π | =



Result of Compilation

51

 
( opening proofs for polynomials  )

4𝔾
̂zA, ̂zB, ̂zC, q

 
for the evaluations: 

4𝔽
vA, vB, vC, vq

After compiling the Rowcheck with univariate EPC We achieve a 
SNARK with the proof size  |π | =

 
( commitment to polynomials  + consistency commitment)

5𝔾
̂zA, ̂zB, ̂zC, q



Result of Compilation

51

 
( opening proofs for polynomials  )

4𝔾
̂zA, ̂zB, ̂zC, q

 
for the evaluations: 

4𝔽
vA, vB, vC, vq

After compiling the Rowcheck with univariate EPC We achieve a 
SNARK with the proof size  |π | =

 
( commitment to polynomials  + consistency commitment)

5𝔾
̂zA, ̂zB, ̂zC, q



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

52



Roadmap for Pari

1. Design a univariate EPC scheme 

2. Design a univariate PIOP for R1CS rowcheck 

3. Compile the PIOP with EPC 

4. Optimize to reduce proof size

52



Optimizations to reduce proof size

53



Optimizations to reduce proof size

53

1. We use batch commitment and batch opening for EPC which reduces 
the number of group elements to 2𝔾1



Optimizations to reduce proof size

2. We use Square R1CS (SR1CS) [GM17] as the NP-Complete language, 
which checks 
 
 
to only send  , which reduces the number of field elements to vA, vB, vq 3𝔽

53

(Az)2 − Bz = 0

1. We use batch commitment and batch opening for EPC which reduces 
the number of group elements to 2𝔾1



Optimizations to reduce proof size

2. We use Square R1CS (SR1CS) [GM17] as the NP-Complete language, 
which checks 
 
 
to only send  , which reduces the number of field elements to vA, vB, vq 3𝔽

53

(Az)2 − Bz = 0

3. We can also avoid sending  because  if and only if 
 and so the verifier can compute it from 

vq v2
A − vB = vqvt

vq = (v2
A − vB)/vt va, vb

1. We use batch commitment and batch opening for EPC which reduces 
the number of group elements to 2𝔾1



Optimizations to reduce proof size

2. We use Square R1CS (SR1CS) [GM17] as the NP-Complete language, 
which checks 
 
 
to only send  , which reduces the number of field elements to vA, vB, vq 3𝔽

53Hence: |π | = 2𝔾 + 2𝔽

(Az)2 − Bz = 0

3. We can also avoid sending  because  if and only if 
 and so the verifier can compute it from 

vq v2
A − vB = vqvt

vq = (v2
A − vB)/vt va, vb

1. We use batch commitment and batch opening for EPC which reduces 
the number of group elements to 2𝔾1



Garuda

54



Diff of Pari and Garuda

55

Pari Garuda

Square R1CS 
(SR1CS)

Generalized R1CS 
(GR1CS)

Univariate EPC 
(Batched)

Multivariate EPC 
(Non-Batched)

Univariate Rowcheck PIOP Multivariate Rowcheck PIOP 
Using sumcheck protocol



Diff of Pari and Garuda

55

Pari Garuda

Square R1CS 
(SR1CS)

Generalized R1CS 
(GR1CS)

Univariate EPC 
(Batched)

Multivariate EPC 
(Non-Batched)

Univariate Rowcheck PIOP Multivariate Rowcheck PIOP 
Using sumcheck protocol

Support for any custom 
gates, e.g. Lookups



Diff of Pari and Garuda

55

Pari Garuda

Square R1CS 
(SR1CS)

Generalized R1CS 
(GR1CS)

Univariate EPC 
(Batched)

Multivariate EPC 
(Non-Batched)

Univariate Rowcheck PIOP Multivariate Rowcheck PIOP 
Using sumcheck protocol

Support for any custom 
gates, e.g. Lookups

Free addition gates



Diff of Pari and Garuda

55

Pari Garuda

Square R1CS 
(SR1CS)

Generalized R1CS 
(GR1CS)

Univariate EPC 
(Batched)

Multivariate EPC 
(Non-Batched)

Univariate Rowcheck PIOP Multivariate Rowcheck PIOP 
Using sumcheck protocol

Support for any custom 
gates, e.g. Lookups

Free addition gates

Linear-time prover



Generalized R1CS (GR1CS)

56



Generalized R1CS (GR1CS)

56

R1CS:   should satisfy  
Sr1CS:   should satisfy 

z = (x, w) Az ∘ Bz = Cz
z = (x, w) (Az)2 = Cz



Generalized R1CS (GR1CS)

56

R1CS:   should satisfy  
Sr1CS:   should satisfy 

z = (x, w) Az ∘ Bz = Cz
z = (x, w) (Az)2 = Cz

We can extend this to an arbitrary expression of the form like: 
• High degree gate:  
•  Lookup table: 

Az ∘ Bz ∘ (Cz)4 − (Dz)3 ∘ (Ez)4 ∘ Fz + 7 = 0
𝒯(Az, Bz, Cz, Dz, . . ) = 0



Generalized R1CS (GR1CS)

56

R1CS:   should satisfy  
Sr1CS:   should satisfy 

z = (x, w) Az ∘ Bz = Cz
z = (x, w) (Az)2 = Cz

In general, a constraint system is satisfied if  satisfies: z = (x, w)
ℒ(M1z, M2z, …, Mtz) = 0

We can extend this to an arbitrary expression of the form like: 
• High degree gate:  
•  Lookup table: 

Az ∘ Bz ∘ (Cz)4 − (Dz)3 ∘ (Ez)4 ∘ Fz + 7 = 0
𝒯(Az, Bz, Cz, Dz, . . ) = 0



Generalized R1CS (GR1CS)

56

R1CS:   should satisfy  
Sr1CS:   should satisfy 

z = (x, w) Az ∘ Bz = Cz
z = (x, w) (Az)2 = Cz

In general, a constraint system is satisfied if  satisfies: z = (x, w)
ℒ(M1z, M2z, …, Mtz) = 0

We can extend this to an arbitrary expression of the form like: 
• High degree gate:  
•  Lookup table: 

Az ∘ Bz ∘ (Cz)4 − (Dz)3 ∘ (Ez)4 ∘ Fz + 7 = 0
𝒯(Az, Bz, Cz, Dz, . . ) = 0

A GR1CS instance is composed of local predicates 
 

We say  is satisfied iff for all : 

𝒞 = (ℒi : 𝔽 ti → {0,1}, (Mi,1, …, Mi,ti))i∈[c]
𝒞 i ∈ [c] ℒi(Mi,1z, …, Mi,ti) = 0



Grand multivariate zerocheck

57



Grand multivariate zerocheck

57

In GR1CS, we have  different local predicates:c



Grand multivariate zerocheck

57

 
. . . 

ℒ1 → M1,1 , …, M1,t1

ℒc → Mc,1 , …, Mc,tc

In GR1CS, we have  different local predicates:c



Grand multivariate zerocheck

57

 
. . . 

ℒ1 → M1,1 , …, M1,t1

ℒc → Mc,1 , …, Mc,tc

ℒ * → M*1,1 , …, M*1,t

In GR1CS, we have  different local predicates:c

We stack these matrices on top of each other



Grand multivariate zerocheck

57

 
. . . 

ℒ1 → M1,1 , …, M1,t1

ℒc → Mc,1 , …, Mc,tc

ℒ * → M*1,1 , …, M*1,t

In GR1CS, we have  different local predicates:c

We stack these matrices on top of each other

The Rowcheck PIOP checks the following grand multivariate zerocheck:

= S1 ⋅ ℒ1(M*1,1z, …, M*1,tz) + Sc ⋅ ℒc(M*1,1z, …, M*1,tz) = 0
ℒ * (M*1,1z, …, M*1,tz)



Grand multivariate zerocheck

57

 
. . . 

ℒ1 → M1,1 , …, M1,t1

ℒc → Mc,1 , …, Mc,tc

ℒ * → M*1,1 , …, M*1,t

In GR1CS, we have  different local predicates:c

We stack these matrices on top of each other

The Rowcheck PIOP checks the following grand multivariate zerocheck:

= S1 ⋅ ℒ1(M*1,1z, …, M*1,tz) + Sc ⋅ ℒc(M*1,1z, …, M*1,tz) = 0
ℒ * (M*1,1z, …, M*1,tz)

Selector for the st predicate1 Selector for the -th predicatec



Garuda

58

 
. . . 

ℒ1 → M1,1 , …, M1,t1

ℒc → Mc,1 , …, Mc,tc

ℒ * → M*1,1 , …, M*1,t

We stack these matrices on top of each other

The Rowcheck PIOP checks the following grand sumcheck:

= S1 ⋅ ℒ1(M*1,1z, …, M*1,tz) + Sc ⋅ ℒc(M*1,1z, …, M*1,tz) = 0

Selector for the st predicate1 Selector for the -th predicatec

GarudaCompiler

Grand 
Zerocheck

Multivariate 
EPC



Thanks!

59

Open questions 

• Our EPC constructions imply circuit-specific setup 
Q: can we construct EPC schemes that achieve universal setup? 

• What other applications of EPC schemes can we find? 
Ideas: Verifiable Secret Sharing, Accumulators, etc?  

• Our SNARKs don’t achieve ZK. 
Q: How can we demonstrate ZK without increasing the proof size?



Thanks!
ePrint: https://eprint.iacr.org/2024/1245

59

Open questions 

• Our EPC constructions imply circuit-specific setup 
Q: can we construct EPC schemes that achieve universal setup? 

• What other applications of EPC schemes can we find? 
Ideas: Verifiable Secret Sharing, Accumulators, etc?  

• Our SNARKs don’t achieve ZK. 
Q: How can we demonstrate ZK without increasing the proof size?


