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Succinctness: Size of proof  and verifier running time are much 
                         smaller than running time of F

π
2

I know 𝕨 s.t. 
F(𝕩,𝕨) = 1 accept / reject



Q1: How small can the proof  be?π

3



Q1: How small can the proof  be?π

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

 
(on BLS12-381)

|π |144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

Groth16 
2𝔾1 + 1𝔾2 

 
(on BLS12-381)

|π |192 bytes144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

Groth16 
2𝔾1 + 1𝔾2 

Polymath [Lip24] 
3𝔾1 + 1𝔽 

 
(on BLS12-381)

|π |176 bytes 192 bytes144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!



Q1: How small can the proof  be?π

Groth16 
2𝔾1 + 1𝔾2 

Polymath [Lip24] 
3𝔾1 + 1𝔽 

 
(on BLS12-381)

|π |176 bytes 192 bytes144 bytes

Groth16 lower bound 
Pairing-based SNARKs in 
GGM contain at least 2 

group elements:  
 1𝔾1 + 1𝔾2|π | ≥

3

For blockchains, smaller is better!

Can we go lower than 176 bytes?
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How to reduce this cost?

Q2: How fast can we prove?
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Approach 1: Free addition gates Approach 2: Custom gates

• Only pay cryptographic (e.g., MSM) 
costs for multiplication gates 

• Achieved by circuit-specific SNARKs  
[GGPR13, BCTV14, Groth16]

• Specialized gates for particular 
computations (e.g., EC addition, 
Poseidon S-box) 

• Proposed recently for TurboPlonk 
[GW19], used widely 
[RISC0,Plonky3,CBBZ23,STW23]

Unfortunately, no existing SNARK supports both! 
 

Can we fix this?
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New Methodology
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Preprocessing 
SNARK for 

R1CS
Our Compiler

PIOP

EPC Scheme

We adapt existing SNARK methodologies [CHMMVW20, BFS20] 
 to construct our SNARKsFewer responsibilities 

Only needs to be sound

More responsibilities 
PC + Equifficient property
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𝒫 𝒱Compiles to only 4 group elements!

Requires numerous commitments, 
openings, and evaluation proofs 

In contrast, circuit-specific SNARKs like 
Groth16 require no extra group elements
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A × z = zA

Step 1 : Express Lincheck as a linear combination of matrix column vectors. 

… [ ]zA[]z1
z2
⋮
zn

[       ] =×a1 a2 a3 an

[ ]a1 + [ ]+
… [ ]+ = [ ]zA z1 ⋅  z2 ⋅  zn ⋅a2 an



Linchecks via coefficient-equality

16



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate -s over ai {1,…, n}

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate  over zA {1,…, n}Interpolate -s over ai {1,…, n}

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16

Step 2 : Interpolate the column vectors using Lagrange interpolation.  

Interpolate  over zA {1,…, n}Interpolate -s over ai {1,…, n}

                               z1⋅ ̂a1(X) + z2 ⋅ ̂a2(X) + … + zn ⋅ ̂an(X) = ̂zA(X)

[ ]a1 [ ]a2 [ ] = [ ]zAz1⋅   + z2 + zn⋅+…⋅ an



Linchecks via coefficient-equality

16
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Interpolate  over zA {1,…, n}Interpolate -s over ai {1,…, n}

̂zA(i) = ∑
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Prover knows  such thatz ∈ 𝔽n

̂zA(X) = z1 ⋅ ̂a1(X) + ⋯ + zn ⋅ ̂an(X)

̂zB(X) = z1 ⋅ b̂1(X) + ⋯ + zn ⋅ b̂n(X)
̂zC(X) = z1 ⋅ ̂c1(X) + ⋯ + zn ⋅ ̂cn(X)

Coefficient-equality constraint

Prover knows  such thatz ∈ 𝔽n

Lincheck

zA = Az

zB = Bz

zC = Cz

Same coefficients in all!

Step 3 : Now that Lincheck is written in the language of polynomials, we 
can argue that:  
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New Approach for Lincheck

Usually quite cheap!
Rowcheck subPIOP

̂zA ̂zB ̂zC q

Lincheck via coefficient-equality

How to enforce?

18

𝒫 𝒱

R1CS consists of triples  such that the following holds for : 
, or equivalently the following checks are satisfied:

((A, B, C), x, w) z = (x, w)
Az ∘ Bz = Cz

Linear checks: 
, , zA = Az zB = Bz zC = Cz

Nonlinear “row” checks: 
zA ∘ zB = zC

Equifficient Polynomial 
Commitment Schemes!
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Properties of EPC schemes

Extractability

Completeness:  
If the committed polynomials  
• satisfy the evaluation claims ( ), and 
• satisfy the equifficient constraints, 
then the receiver accepts the evaluation proof

p1(z) = v1, …, pn(z) = vn

If adversary outputs a commitment & proof that convinces the receiver, then it 
must know  such that the following holds: 

• PC Extractability:  

• Equifficient constraint satisfaction: 

p1, …, pn
p1(z) = v1, …, pn(z) = vn

p1, …, pn are equifficient wrt E
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Step 1: Using regular KZG, commit to the polynomials and ̂zA, ̂zB, ̂zC

𝖼𝗄 = (1 ⋅ G, τ ⋅ G, τ2 ⋅ G, …, τn−1 ⋅ G)

𝖪𝖹𝖦 . 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, ̂zA) → cA
𝖪𝖹𝖦 . 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, ̂zB) → cB
𝖪𝖹𝖦 . 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, ̂zC) → cC

where    for cM := ∑
i

zM[i] ⋅ τi ⋅ G M ∈ {A, B, C}
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Step 2: Enforce the coefficient-equality constraint. 

 E := {𝒜, ℬ, 𝒞}

To do this, first we construct committer keys that encode each basis… 

𝒜 = { ̂a1, …, ̂an}

ℬ = {b̂1, …, b̂n}

𝒞 = { ̂c1, …, ̂cn}

𝖼𝗄A = [ ̂a1(τ)G, ̂a2(τ)G, ̂a3(τ)G, …, ̂an(τ)G]
𝖼𝗄B = [b̂1(τ)G, b̂2(τ)G, b̂3(τ)G, …, b̂n(τ)G]
𝖼𝗄C = [ ̂c1(τ)G, ̂c2(τ)G, ̂c3(τ)G, …, ̂cn(τ)G]
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Step 3: Next, we take a random linear combination of these committer keys to get the  
“consistency” committer key! 

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

    +α ⋅ 𝖼𝗄A
  +α ⋅[ ̂a1(τ) G, ̂a2(τ) G, … ̂an(τ) G ]
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   γ ⋅ 𝖼𝗄C
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                               +  +  +  

α ⋅ ( z1 ⋅ ̂a1(τ) z2 ⋅ ̂a2(τ) … zn ⋅ ̂an(τ)) ⋅ G
β ⋅ ( z1 ⋅ b̂1(τ) z2 ⋅ b̂2(τ) … zn ⋅ b̂n(τ)) ⋅ G
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KZG-based EPC Construction



KZG-based EPC Construction

 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, (zA(X), zB(X), zC(X))) → cA, cB, cC , c*
 , cA = zA(τ) ⋅ G, cB = zB(τ) ⋅ G cC = zC(τ) ⋅ G

Consistency 
Commitment  =    +   +    c* ( α ⋅ ̂zA(τ) β ⋅ ̂zB(τ) γ ⋅ ̂zC(τ) ) ⋅ G



KZG-based EPC Construction
Equifficient

 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, (zA(X), zB(X), zC(X))) → cA, cB, cC , c*
 , cA = zA(τ) ⋅ G, cB = zB(τ) ⋅ G cC = zC(τ) ⋅ G

Consistency 
Commitment  =    +   +    c* ( α ⋅ ̂zA(τ) β ⋅ ̂zB(τ) γ ⋅ ̂zC(τ) ) ⋅ G
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KZG-based EPC Construction

EPC Check KZG Check + Consistency check

KZG Check
Pass/fail← KZG.CHECK( , ,   )𝗏𝗄 cA vA, πA

Pass/fail← KZG.CHECK( , )𝗏𝗄 cB, vB, πB

Pass/fail ← KZG.CHECK( , )𝗏𝗄 cC, vC, πC

Consistency check

 e(c*, H) ?= ∏
M∈{A,B,C}

e(cM, 𝗏𝗄M)

Step 4: Now, in the EPC check, do regular KZG verifications for each of  
 and  plus a consistency check using our new commitment   cA, cB cC c *

These proofs are computed by 
KZG.Open, which we omit for simplicity!
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R1CS SNARKs from PIOPs + EPC Schemes

Preprocessing 
zkSNARKCompiler

PIOP for rowcheck

EPC Scheme
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PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!
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Completeness: follows from completeness of PIOP + EPC

Proof of knowledge:  
Whenever Arg.V accepts but R1CS is not satisfied, then we can construct an 
adversary that either breaks PIOP soundness or EPC extractability. 
 
Additionally, we show that if 
PIOP has round-by-round soundness → ARG has state-restoration PoK [BCS16]  
Enables safe application of Fiat—Shamir transform in ROM!

Efficiency: 
• Proof size: # commitments + # evals + evaluation proof
• Prover time: time for PIOP prover + time to EPC.Commit and EPC.Open
• Verifier time: time for PIOP verifier + time for EPC.Check
Note: Our construction does not achieve Zero-knowledge; we leave this to future work
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UNIVARIATE ROWSAT PIOP

UNIVARIATE EPC (KZG-BASED)

+ Pari

• SNARK for Square R1CS [GM17] 

• Quasi-Linear Prover 

• Verification needs 3 pairings 

• Proof size 2 field + 2 group elements

32



Instantiations: Garuda and Pari
UNIVARIATE ROWSAT PIOP

UNIVARIATE EPC (KZG-BASED)

+ Pari

• SNARK for Square R1CS [GM17] 

• Quasi-Linear Prover 

• Verification needs 3 pairings 

• Proof size 2 field + 2 group elements

MULTIVARIATE ROWSAT PIOP

MULTIVARIATE EPC (PST-BASED)
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Both require circuit-specific trusted setup =(
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Implementation in arkworks
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GR1CS programming infrastructure, backward-compatible with R1CS

Garuda Implementation + Pari Implementation

Automatic Solidity Smart contract generator for Pari
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Open questions 

• Our EPC constructions imply circuit-specific setup 
Q: can we construct EPC schemes that achieve universal setup? 

• What other applications of EPC schemes can we find? 
Ideas: Verifiable Secret Sharing, Accumulators, etc?  

• Our SNARKs don’t achieve ZK. 
Q: How can we demonstrate ZK without increasing the proof size?

github: github.com/alireza-shirzad/garuda-pari
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“consistency” committer key! 

⋮𝖼𝗄 * = α ⋅ 𝖼𝗄A + β ⋅ 𝖼𝗄B + γ ⋅ 𝖼𝗄C [       ](α ⋅ a1(τ) + β ⋅ b1(τ) + γ ⋅ c1(τ)) ⋅ G

(α ⋅ an(τ) + β ⋅ bn(τ) + γ ⋅ cn(τ)) ⋅ GThese are random numbers in {1,…, n}

=

Now, commit to , which recall is the equal-coefficient representation of , and  z ̂zA, ̂zB ̂zC

c* = ⟨z, 𝖼𝗄*⟩ = (α ⋅ ̂zA(τ) + β ⋅ ̂zB(τ) + γ ⋅ ̂zC(τ)) ⋅ G

This is the consistency commitment!
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Note: For simplicity, we assume that public input length is 0.
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• 𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = ( π1 = w1(τ)G , π2 = w2(τ)G )

W2(X) =
p2(X) − p2(z)

X − z
• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖼𝗆, z, v = (v1, v2)) → {0,1}

  e(c1, H) ?= e(π1, τH − zH) ⋅ e(p1(z)G, H)

e(c2, H) ?= e(π2, τH − zH) ⋅ e(p2(z)G, H)
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KZG-based EPC (Setup and Specialize)

𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾(𝗉𝗉, E = (𝒜, ℬ)) → (𝖼𝗄, 𝗏𝗄)

 𝖼𝗄 = (G, τG, τ2G, …, τnG) ∪ (( ai(τ) + bi(τ))G)n
1=1

 𝗏𝗄 := τH , H, H

𝒜 = (ai(x))n
i=1 ℬ = (bi(x))n

i=1

α

α

β

β

Sample , ∈ 𝔽α β
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 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, p = (p1(X), p2(X))) → c1, c2 , c*
c1 = p1(τ)G, c2 = p2(τ)G




                    


                    

c* = ( p1(τ) + p2(τ))G

= ⟨p1, (( ai(τ) + bi(τ))G)n
1=1

⟩

= ⟨p2, (( ai(τ) + bi(τ))G)n
1=1

⟩

α

α

β

β

βα

Consistency 
Commitment

Equifficient
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KZG-based EPC (Open & Verify)
𝖮𝗉𝖾𝗇(𝖼𝗄, p, z) → π = (π1 = w1(τ)G , π2 = w2(τ)G)

w1(x) =
p1(X) − p1(z)

X − z
w2(X) =

p2(X) − p2(z)
X − z
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 elements for opening2𝔾
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PIOP to check that for three polynomials  
it holds that for each :  
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PIOP to check that for three polynomials  
it holds that for each :  

̂za(X), ̂zb(X), ̂zc(X)
i ∈ {1,...,m} ̂za(i) * ̂zb(i) = ̂zc(i)

Let  be the vanishing polynomialt(X) = (X − 1)(X − 2)…(X − m)
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≟


̂zA(r) ⋅ ̂zB(r) − ̂zC(r)

t(r) ⋅ q(r)

Note: In practice, We replace with a smooth multiplicative subgroup {1,…, m}

q(X) =
̂za(X) ⋅ ̂zb(X)

̂zc(X)
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2. We use Square R1CS (SR1CS) [GM17] as the NP-Complete language, 
which checks 
 
 
to only send  , which reduces the number of field elements to vA, vB, vq 3𝔽

53Hence: |π | = 2𝔾 + 2𝔽

(Az)2 − Bz = 0

3. We can also avoid sending  because  if and only if 
 and so the verifier can compute it from 

vq v2
A − vB = vqvt

vq = (v2
A − vB)/vt va, vb

1. We use batch commitment and batch opening for EPC which reduces 
the number of group elements to 2𝔾1
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Pari Garuda

Square R1CS 
(SR1CS)

Generalized R1CS 
(GR1CS)

Univariate EPC 
(Batched)

Multivariate EPC 
(Non-Batched)

Univariate Rowcheck PIOP Multivariate Rowcheck PIOP 
Using sumcheck protocol

Support for any custom 
gates, e.g. Lookups

Free addition gates

Linear-time prover
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Generalized R1CS (GR1CS)

56

R1CS:   should satisfy  
Sr1CS:   should satisfy 

z = (x, w) Az ∘ Bz = Cz
z = (x, w) (Az)2 = Cz

In general, a constraint system is satisfied if  satisfies: z = (x, w)
ℒ(M1z, M2z, …, Mtz) = 0

We can extend this to an arbitrary expression of the form like: 
• High degree gate:  
•  Lookup table: 

Az ∘ Bz ∘ (Cz)4 − (Dz)3 ∘ (Ez)4 ∘ Fz + 7 = 0
𝒯(Az, Bz, Cz, Dz, . . ) = 0

A GR1CS instance is composed of local predicates 
 

We say  is satisfied iff for all : 

𝒞 = (ℒi : 𝔽 ti → {0,1}, (Mi,1, …, Mi,ti))i∈[c]
𝒞 i ∈ [c] ℒi(Mi,1z, …, Mi,ti) = 0
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We stack these matrices on top of each other

The Rowcheck PIOP checks the following grand multivariate zerocheck:

= S1 ⋅ ℒ1(M*1,1z, …, M*1,tz) + Sc ⋅ ℒc(M*1,1z, …, M*1,tz) = 0
ℒ * (M*1,1z, …, M*1,tz)
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Selector for the st predicate1 Selector for the -th predicatec
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. . . 

ℒ1 → M1,1 , …, M1,t1

ℒc → Mc,1 , …, Mc,tc

ℒ * → M*1,1 , …, M*1,t

We stack these matrices on top of each other

The Rowcheck PIOP checks the following grand sumcheck:

= S1 ⋅ ℒ1(M*1,1z, …, M*1,tz) + Sc ⋅ ℒc(M*1,1z, …, M*1,tz) = 0

Selector for the st predicate1 Selector for the -th predicatec

GarudaCompiler

Grand 
Zerocheck

Multivariate 
EPC
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Open questions 

• Our EPC constructions imply circuit-specific setup 
Q: can we construct EPC schemes that achieve universal setup? 

• What other applications of EPC schemes can we find? 
Ideas: Verifiable Secret Sharing, Accumulators, etc?  

• Our SNARKs don’t achieve ZK. 
Q: How can we demonstrate ZK without increasing the proof size?



Thanks!
ePrint: https://eprint.iacr.org/2024/1245
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